B. Tech III Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19AME55e – SMART MATERIALS

(Open Elective-I)

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- Familiarize the smart materials and its role in developing intelligent systems.
- Introduce the students with HBLS and LBHS smart materials.
- Expose the students in smart systems development and uses.
- Understand the working principle of smart actuators and smart sensors.

UNIT I

12 Hours

Introduction to Smart Materials: What is Intelligence? Artificial intelligence Vs. embedded Intelligence, Definition of smart material, need for smart materials, classifications of smart systems, components of a smart systems, smart system applications, the role of Smart Materials in developing Intelligent Systems and Adaptive Structures.

Learning Outcomes:

At the end of this unit, the student will be able to

• Recall what is intelligence.

L1

• Define smart materials.

- L1
- Describe the role of smart materials in development of intelligent systems and adaptive structures.
- Illustrate the applications of smart systems.

L2

1.2

UNIT II: High bandwidth - Low strain generating (HBLS) Smart Materials

10 Hours

Piezoelectric Materials – constitutive relationship, electromechanical coupling coefficients, piezoelectric constants, piezoceramic materials, variation of coupling coefficients in hard and soft piezoceramics, polycrystalline vs single crystal piezoelectric materials, polyvinyldene fluoride, piezoelectric composites.

Magnetostrictive Materials – constitutive relationship, magneto-mechanical coupling coefficients, Joule Effect, Villari Effect, Matteuci Effect, Wiedemann effect, Giant magnetostriction in Terfenol-D, Terfenol-D particulate composites, Galfenol and Metglas materials.

Learning Outcomes:

At the end of this unit, the student will be able to

• Describe the constitutive relationship of piezoelectric materials.

L2

• Compare polycrystalline and single crystal piezeoelectric materials.

- L2
- Explain concepts of Joule effect, Villari effect, Matteuci effect, Wiedemann effect.
- L2

Discuss Galfenol and Metglas materials.

L6

UNIT III

8 Hours

Low bandwidth - High strain generating (LBHS) materials: Shape Memory Alloys (SMA) – Introduction, Phenomenology, Influence of stress on characteristic temperatures, Modelling of shape memory effect. Vibration control through shape memory alloys. Design considerations, multiplexing embedded NiTiNOL actuators. Electro-active Polymers (EAP)- Introduction, Phenomenology, Influence of stress on characteristic temperatures

Learning Outcomes:

At the end of this unit, the student will be able to

• List various types of LBHS smart materials.

L1

• Identify the influence of stress on characteristic temperatures in SMA and EAP.

L3

Mechanical Engineering Department.

JINTUA COMPLETED OF Engineering
PULIVENDULA - 516 390.

Page 1 of 2

Department of Mechanical Engineering	R19
Explain the concept of vibration control through shape memory alloys.	L2
Discuss design considerations of shape memory alloy.	L6
·	hours
Based on HBLS smart materials: Piezoelectric Actuators – Induced Strain actuation model, and Bimorph Actuators, Actuators embedded in composite laminate, Impedance matching design, Feedback Control, Pulse Drive, Resonance Drive. Magnetostrictive Actuators – Magnetostrictive Actuators, Thermal instabilities, Discretely distributed actuation, Manetostrictive Composite Based on LBHS Smart Materials - Shape Memory Alloy based actuators for Shape Control,	in actuator etostrictive sites.
active Polymers for Work-Volume Generation	
 Learning Outcomes: At the end of this unit, the student will be able to Recall working principle of actuators. Explain impedance matching in actuator design, feedback control, pulse drive 	L1 and L2
 resonance. Describe the working principle of Piezoelectric Actuators & Magnetostrictive Actuator 	rs. L2
 Describe the working principle of Piezoelectric Actuators & Magnetostrictive Actuator Discuss the concepts of actuators based on HBLS and LBHS. 	L6
	Hours
of Self Sensing MEMS Sensors. Sensors based on LBHS Smart Materials - EAP based sensors, SMA based encoders, Option based Sensing.	otical Fibre
Learning Outcomes:	
At the end of this unit, the student will be able to	
 Select the type of sensor required for smart systems. 	L1
 Explain techniques of self sensing MEMS sensors. 	L2
 Discuss EPA based and SMA based sensors. 	L6
 Explain optical based sensing system. 	L2
 Text Books: M.V. Gandhi, B.D. Thompson" Smart Materials and Structures" Springer Science of Media, 31-May-1992. 	& Business
Reference Books:	
 Brian Culshaw, Smart Structures and Materials, Artech House, 2000. Gauenzi, P., Smart Structures, Wiley, 2009. Cady, W. G., Piezoelectricity, Dover Publication 	
Course Outcomes:	
At the end of this Course the student will be able to	
 Describe the role of smart materials in development of intelligent systems and ads structures. 	1.12
 Compare polycrystalline and single crystal piezoelectric materials. 	L2
 Identify the influence of stress on characteristic temperatures in SMA and EAP. 	L3
 Explain techniques of self sensing MEMS sensors. 	L2